JAPAN: Toshiba Corp. has launched six next-generation stepping motor control drivers using the Toshiba BiCD 130nm mixed-signal process technology, providing excellent Ron per unit area, to achieve highly integrated, low-power devices with the industry's highest voltage and current combination, (Parts TB6600HG and TB67H302HG)1 and compact footprints (Parts TB67S213FTAG, TB67S215FTAG, TB62261FTAG and TB62262FTAG).
These devices are well suited for a variety of applications such as printers, ATM, robotics, process control machines, and medical equipment.
Today's printers, ATMs, and process control machines require high speed, high torque, and high precision for efficient long-term operation. The new Toshiba stepping motor control drivers satisfy these requirements through exceptional design, superior performance, and optimum packaging.
For high-power applications, the TB6600HG and TB67H302HG devices combine the highest voltage and current combination in class and are rated 50V/5.0A2. They come in a heatsink mountable HZIP25 package. In addition, the TB6600HG has 1/16 micro-stepping capability that reduces acoustic noise and vibration.
The TB67S213FTAG and TB67S215FTAG devices are rated 40V/2.5A2 and are housed in a compact QFN-36 6mm x 6mm package for medium-power applications. They also reduce power consumption by 50 percent compared to previous generation devices. The TB62261FTAG and TB62262FTAG devices are rated 40V/1.5A2 and also come in a QFN-36 6mm x 6mm package for low-power applications.
All of the above mentioned Toshiba motor control drivers have a mixed-decay mode, which improves the response characteristics of the motor drive current by changing the current path, for optimum motor driving. The QFN-36 6mm x 6mm packaged devices are also about 30 percent smaller than surface mount devices of similar performance . As such, these motor control drivers can be integrated in motor control boards to reduce customer design costs.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.